
University College London
Department of Computer Science

Cryptanalysis Exercises Lab 1

J. P. Bootle

Copyright c© 2016 jonathan.bootle.14@ucl.ac.uk
January 20, 2017 Version 2.0

mailto:jonathan.bootle.14@ucl.ac.uk


2

Basic Algebra

Click on the “Ans” button to get a hint.
Shift-click on “Ans” buttons that have a green boundary to get a

full solution. Click on the green square to go back to the questions.

Quiz Answer each of the following.

1. 3 + 4 mod 5 =

2. 7 × 8 mod 11 =

3. GF(q) denotes a finite field, where q = pn. What is the size of
GF(11)?
If you are unsure about finite fields, go to slides 11-12 here.

4. What is the characteristic of GF(11)?

5. What is the size of GF(16)?

JJ II J I Back

http://web.ntpu.edu.tw/~yshan/algebra.pdf


3

6. What is the characteristic of GF(16)?

7. Is Z10 a field?

True False

8. Compute x · (x3 + 1) modulo x4 + x− 1. Answer

=

Getting Acquainted with SAGE

Using SAGE Math Cloud

SAGEMath is a free open-source maths software package based on
Python. We will be using SAGE for most of the lab sessions in this
course. SAGE can be accessed online via the SAGE Math Cloud.

JJ II J I Back

https://cloud.sagemath.com/


4

1. First, click the link above and enter your details to register for
a free account.

2. Once you have logged in successfully, click ‘Projects’ in the top
left-hand corner.

3. Click ‘New Project’. Add a title (e.g. ‘Cryptanalysis’) and
a description (e.g. ‘Code for COMPGA18‘) and click ‘Create
Project’.

4. Click on the project you have just created.

5. Add a new file by clicking ‘New’. Choose a name for your file
(e.g. ‘Lab Session 1’), and select ‘SageMath Worksheet’ as the
type.

6. Now you are ready to write code! Type 3+4 and click run.

7. You can write many separate programs in the same window.
You can also leave complex programs to run while you log out
and do something else.

SAGE is built from Python. Most Python commands will work
fine in SAGE, and details of more commands including number theory

JJ II J I Back



5

and algebra can be found here.
You can also install SAGE on your own computer by downloading

here and using the installation guide here.

Basic Maths in SAGE

Find Sage commands to answer the following questions, and copy the
answers into the boxes.

Click on the “Ans” button to get a hint.
Shift-click on “Ans” buttons that have a green boundary to get a

full solution. Click on the green square to go back to the questions.

Quiz Answer each of the following.

1. What are the factors of 12345678?

2. What is the gcd of 3579609 and 890387967?

3. What is 478−1 mod 1329?

JJ II J I Back

http://doc.sagemath.org/html/en/constructions/index.html
http://www.sagemath.org/download.html
http://wiki.sagemath.org/DownloadAndInstallationGuide


6

4. Is 253647728826477399266772652772816653569721 a prime num-
ber?

5. What are the prime divisors of 2266719?

6. What is the next prime number after 1 million?

7. Create two (2 x 2) vectors, and two matrices with sizes (3 x 1)
and (1 x 3). Multiply the first pair together, and the second pair
together (Leave answer box blank).

Computing a modular inverse with Euclid

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to

JJ II J I Back



7

go back to the questions.
Click here for a reminder of the Extended Euclidean Algorithm.

Exercise 1. Let p and q be two distinct primes.

(a) Show how to use the extended Euclidean algorithm to simultane-
ously compute p−1 mod q and q−1 mod p.

(b) What is the complexity of this approach in terms of bit opera-
tions?

(c) Compute 11−1 mod 17 using this method.
(d) Implement the Extended Euclidean Algorithm in SAGE, and use

it to compute 7−1 mod 159.

Primality Testing

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

Click here for a reminder square-and-multiply algorithms.

Exercise 2.

JJ II J I Back

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org/wiki/Exponentiation_by_squaring#Basic_method


8

(a) Create a function ‘MyPower’ which takes inputs a, k and n, and
computes ak mod n using a square-and-multiply algorithm.

(b) In the Fermat primality test, we test whether a number n is prime
by computing an−1 mod n and then checking whether the result
is equal to 1. If the result is not 1, then the number is not prime!
Using your function, and the is prime function, find all of the
composite numbers between 2 and 2000 that pass the Fermat test
with a = 2. Repeat for a = 5.

(c) Using your answer to the previous question, or otherwise, find all
of the Carmichael numbers between 2 and 2000. Hint: remember
that if gcd(a, n) > 1, then n does not need to pass the Fermat test
to base a to be a Carmichael number.

(d) Test any Carmichael numbers that you have found using the Miller-
Rabin test, again with a = 2 and a = 5. Do any of them pass the
test?

(e) (Bonus Question) Find a number larger than 5000 which passes
the Fermat test with base a, but fails the Miller-Rabin test to base
a. Using the sequence of values from the Miller-Rabin test, can
you factor the number without using trial division?

JJ II J I Back

https://en.wikipedia.org/wiki/Carmichael_number


9

Solutions to Exercises

Exercise 1(a) If necessary, swap p and q so that p > q. Since p and
q are distinct primes, gcd(p, q) = 1, and there exist integers A and B
such that Ap + Bq = 1. Then A = p−1 mod q and B = q−1 mod p.
We compute these using the Extended Euclidean Algorithm.

One way to implement the extended Euclidean Algorithm is to use
the back-tracking approach, to be demonstrated in lectures. Other-
wise, the following method allows the answer to be calculated without
working backwards.

Set r−1 = p and r0 = q. We also set A−1 = 1, A0 = 0, and B−1 =
0, B0 = 1. For each i, find ai+1, ri+1 such that ri−1 = ai+1ri + ri+1

as in the Euclidean Algorithm.

At each stage, compute Ai+1 = aiAi + Ai−1 and Bi+1 = aiBi +
Bi−1. These values satisfy Aip − Biq = (−1)i+1ri. When the al-
gorithm terminates after n steps, rn = gcd(p, q) = 1. We take
A = (−1)n+1An and B = (−1)nBn. �

JJ II J I Back



Solutions to Exercises 10

Exercise 1(b) The Extended Euclidean Algorithm requires O(log(p)2)
bit operations. �

JJ II J I Back



Solutions to Exercises 11

ai Ai Bi

- - 1 0
- - 0 1

17 = 1 · 11 + 6 1 1 1
11 = 1 · 6 + 5 1 1 2
6 = 1 · 5 + 1 1 2 3

Figure 1: Gcd of 17 and 11

Exercise 1(c) Again, we can easily find the answer using the back-
tracking method shown in lectures. The alternative solution from an
earlier part of the question is shown below.

Set r−1 = 17, r0 = 11. Figure 1 shows working for the Extended
Euclidean Algorithm. We find that 2 · 17− 3 · 11 = 1. Therefore 11−1

mod 17 ≡ −3 ≡ 14.
�

JJ II J I Back



Solutions to Exercises 12

Exercise 1(d) The SAGE code shown implements the Extended Eu-
clidean Algorithm as presented in lectures.

def gcd1(a,b):
if mod(a,b) == 0:

return [b,0,1]
else:

q = (a- (a%b) )/ b
[d, r, s]=gcd1(b,a-q*b)
return [d,s,r-q*s]

When run on 159 and 7, the output is [1, 3,−68], so the answer is
−68.

�

JJ II J I Back



Solutions to Exercises 13

Exercise 2(a) The following code implements the square-and-multiply
Algorithm.

def MyPower(a,k,n):
K = bin(k)[2:]
A = a % n
c = (A∧ int(K[0]))
for j in range(1,len(K)):

c = (c∧ 2) % n
c = c*(A∧ int(K[j])) % n

return c
�

JJ II J I Back



Solutions to Exercises 14

Exercise 2(b) The following code finds the answer for a = 2. For
a = 2 you should get 341, 561, 645, 1105, 1387, 1729, 1905. For a = 5,
you should get 4, 124, 217, 561, 781, 1541, 1729, 1891.

for i in range(2,2000):
if is prime(i)==False and MyPower(2,i-1,i)==1:

print(i)
�

JJ II J I Back



Solutions to Exercises 15

Exercise 2(c) The Carmichael numbers between 2 and 2000 are
561, 1105, 1729. �

JJ II J I Back



Solutions to Exercises 16

Exercise 2(d) The following code carries out the Miller-Rabin test
to base a. You should find that none pass with either a = 2 or a = 5.

def StrongTest(a,n):
if (n%2)==0:

return ’fail’
b = n-1
k=0

while (b%2)==0:
b = b/2
k = k+1

A = MyPower(a,b,n)
if A == 1 or A == (n-1):

return ’pass’

for i in range(0,k):
A = MyPower(A,2,n)
if A == (n-1):

return ’pass’

(code continues on the next page)

JJ II J I Back



Solutions to Exercises 17

if A == 1:
return ’fail’

return ’fail’
�

JJ II J I Back



Solutions to Exercises 18

Exercise 2(e) The number 5461 passes the Fermat test with base
a = 2, but fails the Miller-Rabin test. From this, we can deduce
that the sequence of values produced by the Miller-Rabin test ends
in 1, but does not contain −1. Therefore, the sequence gives us a
square-root 128 of 1 modulo 5461 which is not ±1. We have 1282 ≡ 1
mod 5461. Rearranging, (128 + 1)(128 − 1) ≡ 0 mod 5461, but 128
is not congruent to ±1. Therefore, gcd(129, 5461) and gcd(127, 5461)
give non-trivial factors of 5461. We find that 5461 = 43 × 127. �

JJ II J I Back



19

Solutions to Quizzes

Solution to Quiz: When working mod 5, we can add and subtract
multiples of 5 freely.

3 + 4 = 7 = 7 − 5 mod 5 = 2

�

JJ II J I Back



Solutions to Quizzes 20

Solution to Quiz: When working mod 11, we can add and subtract
multiples of 11 freely.

7 × 8 = 56 = 56 − 5 × 11 mod 11 = 1

�

JJ II J I Back



Solutions to Quizzes 21

Solution to Quiz: False, Z10 is not a field, because 2 and 5 are not
invertible. �

JJ II J I Back



Solutions to Quizzes 22

Solution to Quiz: We are working mod x4 + x + 1, so we can add
and subtract multiples of x4 + x + 1 freely.

x · (x3 + 1) = x4 + x ≡ −1 mod (x4 + x− 1) = 1

�

JJ II J I Back



Solutions to Quizzes 23

Solution to Quiz: A = matrix([[2, 3], [3, 2])
B = matrix([[3, 4], [1, 1])
A ∗B

A = matrix([[2, 3, 1]])
B = matrix([[3], [1], [2]])
A ∗B �

JJ II J I Back


	 Solutions to Exercises
	 Solutions to Quizzes

	sqIDanswer1: 
	obj.answer1.1: 
	tally.answer1.1: 
	obj.answer1.2: 
	tally.answer1.2: 
	obj.answer1.3: 
	tally.answer1.3: 
	obj.answer1.4: 
	tally.answer1.4: 
	obj.answer1.5: 
	tally.answer1.5: 
	obj.answer1.6: 
	tally.answer1.6: 
	tally.answer1.7: 
	obj.answer1.8: 
	tally.answer1.8: 
	tallytotal.answer1: 
	sqIDanswer: 
	obj.answer.1: 
	tally.answer.1: 
	obj.answer.2: 
	tally.answer.2: 
	obj.answer.3: 
	tally.answer.3: 
	obj.answer.4: 
	tally.answer.4: 
	obj.answer.5: 
	tally.answer.5: 
	obj.answer.6: 
	tally.answer.6: 
	obj.answer.7: 
	tally.answer.7: 
	tallytotal.answer: 


